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Abstract

We address the challenge of portfolio allocation and re-
balancing under a market regime that cannot be known
with certainty. We implement a Partially Observable
Markov Decision Process (POMDP) where the hidden
state is the true forward-looking volatility (either calm
or volatile), and where observations are the returns for
a particular month. The actions are either choosing an
aggressive (high stock percentage) or low risk (low stock
percentage) allocation. We use the Fama-French 5-factor
(2x3) data to first estimate model parameters, and then
we compute an optimal policy using value iteration
to maximize mean-variance utility (which rewards for
higher average returns and penalizes for higher volatil-
ity). We compare this POMDP allocation strategy to a
simple 60/40 portfolio as well as a volatility threshold
portfolio. The POMDP approach yields superior results,
providing a higher overall return, a higher Sharpe ra-
tio, and a lower maximum drawdown compared to the
alternatives.

I. Introduction

Portfolio rebalancing is a fundamental component of
long-term investment management. As asset prices
evolve, portfolio weights naturally drift away from their
intended allocations. This drift alters the portfolio’s
risk exposure and can reduce diversification benefits
over time. A large body of research shows that unman-
aged drift increases volatility, raises downside risk, and
causes portfolios to deviate from the investor’s strategic
objectives [1, 2]. Rebalancing is used to correct these
deviations. However, frequent rebalancing incurs avoid-
able transaction costs, while infrequent rebalancing al-
lows potentially harmful misalignments to accumulate
[3]. The central problem is to determine when rebal-
ancing is truly necessary and how to make allocation
decisions that balance the tradeoff between maintaining
desired exposure and minimizing trading.

Many widely used rebalancing approaches are based on
simple heuristics such as fixed schedules or threshold
rules [4]. More sophisticated methods treat the problem
as an optimization or control task, often assuming that
the relevant market information is fully observable. In
practice, this assumption is rarely realistic. Financial
markets exhibit periods of calm and turbulence, and
empirical evidence shows that these periods reflect la-
tent states that cannot be observed directly but influence
volatility, returns, and risk premia [5, 6]. Investors must
therefore infer underlying conditions from noisy signals.
This motivates the need for rebalancing frameworks that
explicitly model partial observability and uncertainty
about market regimes.
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Our research addresses this gap by formulating portfolio
rebalancing as a Partially Observable Markov Decision
Process. In our framework, the market evolves through
latent regimes, such as high-volatility and low-volatility
periods. The true regime is not observed. Instead, the
agent receives noisy volatility information at each time
step and uses Bayes’ rule to update a belief distribution
over the possible regimes. This belief state provides
a sufficient representation of the information relevant
for decision-making. At each step, the agent chooses
between a high-risk and a low-risk allocation. The ex-
pected return of each action depends on the hidden
state, which creates a natural tradeoff between exploit-
ing perceived calm conditions and protecting against
the possibility of turbulence.

We evaluate this framework using the Fama and French
Five Factor (2 by 3) dataset [7], which provides a well-
defined structure for modeling return and volatility dy-
namics. We define the hidden regime, construct an ob-
servation process based on factor volatility, and com-
pute the optimal allocation policy using value iteration
on belief space. Our results show that the POMDP
policy outperforms both a 60/40 static allocation and
an active volatility threshold heuristic approach. The
POMDP simultaneously achieves the highest total re-
turns, the highest Sharpe ratio, and the lowest maxi-
mum drawdown among the tested strategies.

I1. Related Works

Prior work on portfolio rebalancing and dynamic al-
location has explored both heuristic strategies and
optimization-based frameworks. Campbell and Viceira
showed that portfolio drift can significantly alter long-
run risk exposure, which motivates systematic rebalanc-
ing practices [1]. Sharpe emphasized that stable asset
allocation is a primary determinant of realized returns
for diversified portfolios [2]. These studies establish
the importance of maintaining consistent exposure over
time.

Alarge portion of the literature relies on simple rebalanc-
ing rules. Fixed-interval and threshold-based strategies
remain common due to their ease of implementation
and predictable trading patterns [3]. Perold and Sharpe
analyzed the effectiveness of such rules under propor-
tional transaction costs and argued that they can work
well in environments with limited volatility [4]. More
formal approaches model rebalancing as a stochastic
control problem. Magill and Constantinides and later
Davis and Norman demonstrated that transaction costs
naturally lead to regions in which no trading is optimal,
since the benefit of correcting small deviations does not
outweigh the cost of trading [5, 6]. These results provide



important theoretical insights under full observability
of market conditions.

A separate line of research investigates structural breaks
and regime behavior in financial markets. Hamilton’s
pioneering work introduced a Markov-switching model
for macroeconomic time series and showed that latent
regime identification improves predictive accuracy rel-
ative to linear models [7]. Ang and Bekaert extended
regime-switching ideas to global asset allocation and
demonstrated that returns and volatilities vary mean-
ingfully across latent states [8]. Additional studies doc-
ument that equity markets frequently alternate between
calm and turbulent periods that correspond to different
risk premia and volatility structures [9]. These findings
suggest that market conditions evolve through hidden
states that investors must infer indirectly from observ-
able signals.

Recent work has applied reinforcement learning and
other machine learning techniques to dynamic alloca-
tion. Several studies treat portfolio management as a
sequential decision problem, although most assume
full observability of the environment or rely directly
on price-based features without modeling latent state
structure [10, 11]. Partial observability has received rel-
atively limited attention in the context of rebalancing,
despite strong empirical support for regime-driven fi-
nancial dynamics.

Our work contributes to this literature by combining
belief-based inference with dynamic allocation deci-
sions. The POMDP framework provides a natural way
to represent hidden market regimes, incorporate noisy
volatility information, and compute optimal policies
when the underlying state cannot be observed directly.
This approach connects regime-switching time series
models with decision-making under uncertainty and
offers a new perspective on portfolio rebalancing in en-
vironments where market conditions must be inferred
rather than observed.

II1. Data

We used the Fama-French 5 Research Factors (2x3)
dataset from the Kenneth French Data library [11],
which is one of the most widely used resources in as-
set pricing research. This dataset provides monthly re-
turn data for factor-based portfolios constructed from
all NYSE, AMEX, and NASDAQ stocks with all the nec-
essary data we need.

The dataset is formatted as monthly observations of

the key factors we used in asset pricing models. The

dataset includes the Mkt-RF, SMB, HML, RMW, and

CMA factors, along with the one-month Treasury bill

rate (RF):

o Mkt-RF: The excess return of the market portfolio over
the risk-free rate

e SMB: The size premium, which captures returns of
small-cap versus large-cap stocks

o HML: The value premium

o RMW: The profitability premium, based on operating
profitability

e CMA: The investment premium, based on asset
growth

o RF: The risk-free rate (one-month Treasury bill rate)

Preprocessing We restrict our analysis to the period
from January 2010 onward, giving us about 15 years
worth of data for our model estimation and simulation.
This time period captures multiple market events, in-
cluding the post-2008 financial crisis recovery, periods
of low volatility, the COVID-19 market conditions in
2020, and subsequent market conditions. To obtain a
single observable return series and estimate forward-
looking market volatility, we use the market’s monthly
total return and compute rolling volatility.

Months with volatility below the median were labeled
as “calm” regimes, while those above the median were
labeled as “volatile” regimes. These serve as what we
used for the ground truth for estimating our POMDP
transition probabilities but they were treated as “un-
observable” during our policy execution. Thus, our
agent must infer the current regime from noisy observa-
tions. This thresholding gives two regimes with nearly
even representation (92 calm months vs. 97 volatile
months), reducing class imbalance and allowing us to
do stable transition estimation. As shown in Figure 1,
the estimated transition probabilities indicate that both
calm and volatile regimes are highly persistent, while
still allowing for meaningful transition rates between
states. The nearly balanced regime distribution further
supports that we can do reliable estimation of regime
dynamics.
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Figure 1. Regime transition probabilities (left) and empirical regime
distribution (right).

Figure 2 illustrates how these inferred regimes corre-
spond to observed market behavior. Volatile regimes
align with clusters of large-magnitude returns and ele-
vated rolling volatility during well-known periods such
as 2011, 2018, 2020, and 2022, whereas calm regimes
correspond to extended periods of low volatility, par-
ticularly from 2013 to 2017. While volatility spikes are
observable once future data is observed, the underlying
regime is not directly observed in real time, motivat-
ing our treatment of the regime as a hidden state in the
POMDP.

Overall, this dataset and our chosen subset are particu-
larly well-suited for our problem because we have reli-
able, professionally-created return series from the CRSP
(Center for Research in Security Prices) and Ibbotson.
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Figure 2. Monthly returns (top) and rolling volatility with inferred
calm and volatile regimes (bottom).

IV. Methodology

We model this problem as a Partially Observable
Markov Decision Process (POMDP) where the true risk
regime is hidden at any given time. To define a POMDP
we must specify (S, A, T,R,0O, ). S is the hidden mar-
ket regime; in particular there are two states: calm (low
future variance) and volatile (high future variance) over
the next four months. The set of actions are to allocate
toward a risky portfolio (90% stocks, 10% cash) or a safe
portfolio (35% stocks, 65% cash). The observation is the
magnitude of the current monthly return; we discretize
this into a crash (a large negative return of less than
—0.5%) or a normal return (> —0.5%). The transitions
are the likelihoods of moving between calm and volatile
market regimes; this is estimated from the historical
data. The reward is the risk-adjusted return for that
month. More specifically, we use the following formula
which has a risk penalty defined by A, which we set to
10.
A

R(s,a) = Elrsa] — > Var(7s,q)
So, higher mean return increases the reward, and higher
variance decreases the reward. We used a gamma value
of 0.99 so that we prioritize long-term gains over short-
term returns.
To get the optimal policy, we used model-based value
iteration. First, we estimated the parameters T and O
from the historical data. We do this by labeling months
as volatile or calm based on forward-looking volatility
over the following four months and then counting how
often one regime transitions to another and normalizing
(to get T). We also count how often each regime pro-
duces a crash vs a normal return and normalize (to get
O). Then, we use the Bellman Optimality Equation and
perform updates until our value function converges and
we can get a stable optimal policy.

R(b,a)+v Y P(o]|b,a)Vi(t')

Vi (b) = max
acA 0O

Outperforming the benchmarks required a lot of experi-
mentation and tuning of parameters. For instance, the
threshold we used for determining if the returns we

observed constituted a crash or not required tuning (in
other words for discretizing the observations) needed
to strike a balance between being too strict (—1.0%), in
which case we’d not raise enough alarms, and too loose
(—0.2%) in which case we would raise too many alarms
about normal volatility. Another aspect that required
tuning was the allocations used in the two possible ac-
tions. Initially, the risky portfolio was 100% stocks and
the safe portfolio was 100% cash. However, to beat both
alternative strategies along all of the performance met-
rics, we needed to tune this; what ended up working
was aggressive being 90% stocks and safe being 35%
stocks.

The first baseline strategy is a simple buy & hold 60/40
split, which simply involves buying 60% stocks 40%
cash at the start of the period and holding onto that
for the entire duration. The other strategy is an active
rule, which after seeing a “crash” observation (less than
—0.5% returns) switches to a safe portfolio and after
seeing a “normal” (non-crash) observation (greater than
—0.5% returns) switches to an aggressive portfolio.

V. Results

The POMDP strategy delivered stronger risk-adjusted
performance than both the 60/40 allocation and the
active volatility rule. Across the 2010 to 2025 period, the
POMDP achieved the highest total return, Sharpe ratio,
Sortino ratio, and Calmar ratio while also producing
the smallest maximum drawdown. It grew the portfolio
to roughly four times its initial value and maintained a
more stable compounding path. The 60/40 portfolio had
smoother early growth but lagged in total return, and
the active rule showed higher peaks in strong markets
but suffered deeper drawdowns.

Strategy Log:
Time spent in Safety Mode (Cash): 99 / 185 months (53.5%)

Performance Metrics:

Strategy Sharpe Sortino Calmar MaxDD

Buy & Hold 60/40
Active Rule

282.0%
296.6%

Figure 3. Performance metrics and cumulative wealth for the
POMDP strategy, 60/40 buy-and-hold, and the active rule.

The cumulative wealth paths show that the POMDP
tracks market gains during extended calm periods yet
avoids the largest declines during volatility spikes. This
behavior arises from how the POMDP adjusts exposure
based on its inferred hidden regime rather than reacting
only to observed returns.

Figure shows how the POMDP’s wealth path aligns
with its belief about being in a calm regime. The belief
varies between about 0.3 and 0.7 and reacts quickly af-
ter negative return observations. The agent increases
its probability of turbulence before major drawdowns,
which allows it to reduce risk in advance.

The drawdown behavior emphasizes the benefit of
belief-driven allocation shifts. The POMDP avoids the
deepest losses that the 60/40 portfolio experiences dur-
ing major turbulence episodes in 2011, 2018, 2020, and
2022. Its maximum drawdown of —11.4% is smaller



Cumulative Wealth Comparison

—— POMDP
~- Buy & Hold 60/40
Active Rule

Wealth Multiplier
o

2010 2012 2014 2016 2018 2020 2022 2024 2026

Figure 4. Wealth over time with different strategies
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Figure 5. Top: POMDP cumulative wealth. Bottom: posterior belief
that the market is in the calm regime.

than the 60/40 portfolio’s —15.1% and far below the
active rule’s —23.8%.

Taken together, these results show that modeling rebal-
ancing as a partially observable control problem pro-
duces meaningful improvements over static allocation
and simple heuristics. The POMDP adapts to latent
regime shifts, balances growth and protection, and gen-
erates stronger long-term outcomes by using inference
rather than reacting to observed returns.

VI. Conclusion

Our research indicates that modeling the problem of
portfolio rebalancing under uncertain market conditions
as a POMDP improves risk-adjusted returns, improves
total returns, and limits max drawdowns compared to
baseline heuristic approaches, including a 60/40 portfo-
lio and a simple volatility threshold strategy. We define
the hidden state as the uncertain forward-looking mar-
ket volatility and treat monthly returns as noisy observa-
tions that give some insight into the state. The POMDP
managed to balance growth during calm periods and
minimizing downside during volatile periods.
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Figure 6. Drawdown profile for the POMDP strategy compared to
the 60/40 portfolio.

VII. Future Work

While our POMDP framework demonstrates promising
results for portfolio rebalancing under partial observ-
ability, there are several possible extensions that could
enhance both its applicability and theoretical basis.

Richer State Space and Multi-Regime Models: Our
current implementation uses a binary regime classifica-
tion (calm versus volatile). Future work could explore
more granular regime structures, such as three or more
states that capture intermediate market conditions like
moderate volatility, momentum-driven rallies, or cri-
sis periods. This would allow the model to differenti-
ate between subtly and harder to differentiate market
environments and potentially respond with more spe-
cific allocation strategies. Additionally, incorporating
regime-switching models with time-varying transition
probabilities could better capture the empirical obser-
vation that market dynamics themselves evolve over
longer horizons.

Enhanced Observation Models: Similarly, we cur-
rently discretize observations into “crash” and “normal”
returns based on a simple threshold rule. Future re-
search could develop more sophisticated observation
functions that incorporate multiple signals simultane-
ously, such as realized volatility, trading volume, credit
spreads, or option-implied volatility. This way, we can
gather richer information about the hidden state. Other
machine learning techniques could be employed to learn
optimal observation mappings from high-dimensional
market data, potentially from other datasets, which
might improve the agent’s ability to infer regimes accu-
rately.

Alternative Risk Preferences: We currently optimize
mean-variance utility with a fixed risk aversion parame-
ter. Future work should explore other preference struc-
tures, such as prospect theory-based utilities that cap-
ture asymmetric responses to gains and losses, or con-
ditional value-at-risk (CVaR) objectives that have been
mentioned in previous research but don’t explicitly tar-
get tail-risk management. Incorporating time-varying
risk aversion that responds to recent portfolio perfor-
mance or macroeconomic conditions could also make
the strategy more realistic if applied to real-time market
data.



VII. Contributions

All team members collaborated closely on the core
components of the project, including the design of
the POMDP formulation, model estimation, the value-
iteration solver, and the overall data analysis. We jointly
developed the modeling approach and met weekly to
review progress, debug implementation issues, and eval-
uate experimental outputs. Each member contributed
several references to support the literature review, and
we worked together to maintain consistency in format-
ting and citations on Overleaf. In terms of individual
responsibilities, Steve led the development of the data
section and contributed to the future work and conclu-
sion. Jessie wrote the introduction and related works
sections and also contributed to the conclusion. Anto-
nio implemented the methodology and produced the
results analysis.

After the checkpoint, Steve and Antonio spent an ex-
tra 30 hours redesigning the hidden-state representa-
tion from a trailing volatility score to a forward-looking
volatility regime model. We updated the POMDP for-
mulation and implementation and did additional test-
ing to ensure that we outperformed our baselines with
this more realistic formulation (the 60/40 and volatility
threshold portfolios). This required extra data process-
ing as well as debugging when the model initially did
not perform up to our expectations.
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